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The soliton perturbation theory is used to study and analyze the stochastic perturbation
of optical solitons, with power law nonlinearity, in addition to deterministic perturba-
tions, that is governed by the nonlinear Schrödinger’s equation. The Langevin equations
are derived and analysed. The deterministic perturbations that are considered here are
due to filters and nonlinear damping.
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1. INTRODUCTION

The dynamics of pulses propagating in optical fibers has been a major area
of research given its potential applicability in all optical communication systems.
It has been well established (Hasegawa and Kodama, 1995; Wabnitz et al., 1995)
that this dynamics is described, to first approximation, by the integrable Nonlinear
Schrödinger Equation (NLSE). Here the global characteristics of the pulse enve-
lope can be fully determined by the method of Inverse Scattering Transform (IST)
and in many instances, the interest is restricted to the single pulse described by
the one soliton form of the NLSE. Typically though, distortions of these pulses
arise due to perturbations which are either higher order corrections in the model
as derived from the original Maxwell’s equations (Hasegawa and Kodama, 1995;
Wabnitz et al., 1995), physical mechanisms not considered at first approximation
like Raman effects or external perturbations such as the lumped effect due to the
addition of bandwidth limited amplifiers in a communication line. Mathemati-
cally, these corrections are seen as perturbations of the NLSE and most of them
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have been studied thoroughly by regular asymptotic (Biswas, 2003), soliton per-
turbation (Hasegawa and Kodama, 1995) or Lie tranform (Hasegawa and Kodama,
1995) methods.

Besides the deterministic type perturbations one also needs to take into ac-
count, from practical considerations, the stochastic type perturbations. These ef-
fects can be classified into three basic types:

1. Stochasticity associated with the chaotic nature of the initial pulse due to
partial coherence of the laser generated radiation.

2. Stochasticity due to random nonuniformities in the optical fibers like the
fluctuations in the values of dielectric constant the random variations of
the fiber diameter and more.

3. The chaotic field caused by a dynamic stochasticity might arise from a
periodic modulation of the system parameters or when a periodic array of
pulses propagate in a fiber optic resonator.

Thus, stochasticity is inevitable in optical soliton communications (Abdullaev
and Garnier, 1999; Abdullaev and Baizakov, 2000; Abdullaev et al., 2000; Goedde
et al., 1997; Kodama and Hasegawa, 1983, 1992; Kodama et al., 1994; Mecozzi
et al., 1991; Moores et al., 1994). Stochasticity are basically of two types namely
homogenous and nonhomogenous (Elgin, 1993).

1. In the inhomogenous case the stochasticity is present in the input pulse
of the fiber. So the parameter dynamics are deterministic but however the
initial values are random.

2. In the homogenous case the stochasticity originates due to the random
perturbation of the fiber like the density fluctuation of the fiber material
or the random variations in the fiber diameter etc.

2. MATHEMATICAL FORMULATION

The dimensionless form of the Nonlinear Schrödinger’s Equation (NLSE) is
given by

iqt + 1

2
qxx + F (|q|2)q = 0. (1)

where F is a real-valued algebraic function and the smoothness of the complex
function F (|q|2)q : C �→ C is necessary. Considering the complex plane C as a
two-dimensional linear space R2, the function F (|q|2)q is k times continously
differentiable so that (Biswas, 2003)

F (|q|2)q ∈
∞⋃

m,n=1

Ck((−n, n) × (−m,m); R2)
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Equation (1) is a nonlinear partial differential equation (PDE) of parabolic type
that is not integrable, in general. The special case, F (s) = s, also known as the
Kerr law of nonlinearity, in which case it reduces to the cubic Schrödinger’s
equation, that is integrable by the method of Inverse Scattering Transform (IST)
(Hasegawa and Kodama, 1995; Wabnitz et al., 1995). The IST is the nonlinear
analog of Fourier transform that is used for solving the linear partial differential
equations. Schematically, the IST and the technique of Fourier transform are
similar (Hasegawa and Kodama, 1995). The solutions are known as solitons.
The general case F (s) �= s takes it away from the IST picture as it is not of
Painleve type (Hasegawa and Kodama, 1995). Equation (1), physically, represents
the propagation of solitons through an optical fiber.

The three conserved quantities or integrals of motion (Biswas, 2003) are the
energy (E) or L2 norm, linear momentum (M) and the Hamiltonian (H ) that are
respectively given by

E =
∫ ∞

−∞
|q|2dx (2)

M = i

2

∫ ∞

−∞
(q∗qx − qq∗

x ) dx (3)

H =
∫ ∞

−∞

[
1

2
|qx |2 − f (I )

]
dx (4)

where

f (I ) =
∫ I

0
F (ξ ) dξ (5)

and the intensity I is given by I = |q|2. The soliton solution of (1), although not
integrable, is assumed to be given in the form (Kodama and Ablowitz, 1981)

q(x, t) = A(t)g[B(t)(θ − θ̄(t))]eiφ(x,t) (6)

where

∂θ

∂x
= 1,

∂θ

∂t
= 0,

dθ̄

dt
= v (7)

with

∂φ

∂x
= −κ (8)

and

∂φ

∂t
= B2

2

I0,0,2

I0,2,0
− κ2

2
+ 1

I0,2,0

∫ ∞

−∞
g2(s)F (A2g2(s)) ds (9)
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Here, the following integral is defined

Iα,β,γ =
∫ ∞

−∞
ταgβ(τ )

(
dg

dτ

)γ

dτ (10)

for non-negative integers α, β and γ with τ = B(t)(θ − θ̄ (t)). In (6), g represents
the shape of the soliton described by the GNLSE and it depends on the type of
nonlinearity in (1). The parameters A(t) and B(t), in (6), respectively represent
the soliton amplitude and width, while φ(x, t) is the phase of the soliton and
therefore K is the frequency of the soliton while v is the velocity. The soliton
width and the amplitude are related as B(t) = λ(A(t)) where the functional form
λ depends on the type of nonlinearity in (1). Also, θ̄(t) gives the mean position
of the soliton. For such a general form of the soliton given by (6), the integrals of
motion, from (2), (3) and (4), respectively reduce to

E =
∫ ∞

−∞
|q|2dx = A2

B
I0,2,0 (11)

M = i

2

∫ ∞

−∞
(qq∗

x − q∗qx) dx = −κ
A2

B
I0,2,0 (12)

H =
∫ ∞

−∞

[
1

2
|qx |2 − f (|q|2)

]
dx

= A2B

2
I0,0,2 + κ2A2

2B
I0,2,0 −

∫ ∞

−∞

∫ I

0
F (s) dsdx (13)

For the soliton given by (6), the parameters are now defined as (Biswas, 2003)

κ(t) = i

2

∫ ∞
−∞ (qq∗

x − q∗qx) dx
∫ ∞
−∞ |q|2dx

(14)

θ̄(t) =
∫ ∞
−∞ θ |q|2dθ
∫ ∞
−∞ |q|2dθ

(15)

From (11), (14) and (15), the parameter dynamics of the unperturbed soliton is as
follows

dE

dt
= 0 (16)

dκ

dt
= 0 (17)

dθ̄

dt
= −κ (18)
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along with (8) and (9). Here, (9) is obtained by differentiating (6) with respect
to t and subtracting from its conjugate while using (1). The parameter dynamics
for the amplitude and the width of the soliton individually can be obtained for the
special cases of F (s) once the functional form of F is known.

The NLSE along with its perturbation terms is given by

iqt + 1

2
qxx + F (|q|2)q = iεR[q, q∗] (19)

Here R is a spatio-differential operator while the perturbation parameter ε, with
0 < ε � 1, represents the relative width of the spectrum in fiber optics that arises
due to quasi-monochromaticity (Biswas, 2003). In presence of perturbation terms,
as in (19), the integrals of motion are modified. In most instances, a consequence
of this is an adiabatic deformation of the soliton parameters like its amplitude,
width, frequency and velocity accompanied by small amounts of radiation or
small amplitude dispersive waves. The adiabatic parameter dynamics, in presence
of perturbation terms, neglecting the radiation, are (Biswas, 2003)

dκ

dt
= ε

I0,2,0

B

A2

[
i

∫ ∞

−∞
(q∗

xR − qxR
∗) dx − κ

∫ ∞

−∞
(q∗R + qR∗) dx

]
(20)

dθ̄

dt
= −κ + ε

I0,2,0

B

A2

∫ ∞

−∞
x(q∗R + qR∗) dx (21)

∂φ

∂t
= B2

2

I0,0,2

I0,2,0
− κ2

2

+ 1

I0,2,0

∫ ∞

−∞
g2(s)F (A2g2(s)) ds + iε

I0,2,0

B

2A2

∫ ∞

−∞
(qR∗ − q∗R) dx

(22)

3. POWER LAW NONLINEARITY

Power law nonlinearity is exhibited in various materials including semicon-
ductors. This law also occurs in media for which higher order photon processes
dominate at different intensities. This law is also treated as a generalization to the
Kerr law nonlinearity.

For the case of power law nonlinearity, F (s) = sp so that f (s) =
sp+1/(p + 1) so that the NLSE given by (1) modifies to

iqt + 1

2
qxx + |q|2pq = 0 (23)

In (23), it is necessary to have 0 < p < 2 to prevent wave collapse (Biswas, 2003,
2004) and, in particular, p �= 2 to avoid self-focussing singularity (Abdullaev and
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Garnier, 1999). The soliton solution of (23) is given by (Biswas, 2003)

q(x, t) = A

cosh
1
p [B(x − x̄(t))]

ei(−κx+ωt+σ0) (24)

where

κ = −v (25)

and

ω = B2

2p2
− κ2

2
(26)

while

B = Ap

(
2p2

1 + p

) 1
2

(27)

On comparing (24) with (6),

g(τ ) = 1

cosh
1
p τ

(28)

while the phase is given by

φ(x, t) = −κt + ωt + σ0 (29)

where ω is the wave number and σ0 is the center of phase of the soliton.
Considering the effects of perturbation (Blow et al., 1988; Kaup, 1990) on

the propagation of solitons through optical fibers, (23) is modified to

iqt + 1

2
qxx + |q|2pq = iεR (30)

where

R = δ|q|2mq + βqxx − γ qxxx + λ(|q|2q)x + ν(|q|2)xq + σ (x, t) (31)

For the perturbation terms, in (31), δ < 0 is the nonlinear damping coefficient
(Blow et al., 1988), β is the bandpass filtering term (Kaup, 1990; Wabnitz et al.,
1995). Also, λ is the self-steepening coefficient for short pulses (Hasegawa and
Kodama, 1995; Kodama and Hasegawa, 1992) (typically ≤100 femto seconds), ν

is the higher order dispersion coefficient (Hasegawa and Kodama, 1995; Wabnitz
et al., 1995) and γ is the coefficient of the third order dispersion (Hasegawa and
Kodama, 1995; Kodama and Hasegawa, 1992; Wabnitz et al., 1995).

It is known that the NLSE, as given by (23), does not give correct prediction
for pulse widths smaller than 1 picosecond. For example, in solid state solitary
lasers, where pulses as short as 10 femtoseconds are generated, the approximation
breaks down. Thus, quasi-monochromaticity is no longer valid and so higher order
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dispersion terms come in. If the group velocity dispersion is close to zero, one needs
to consider the third order dispersion for performance enhancement along trans-
oceanic distances. Also, for short pulse widths where group velocity dispersion
changes, within the spectral bandwidth of the signal cannot be neglected, one
needs to take into account the presence of the third order dispersion (Hasegawa
and Kodama, 1995; Potasek, 1989). The perturbation terms due to α and β are of
non Hamiltonian or non conservative type while those due to λ, ν and γ are of
Hamiltonian or conservative type.

The amplifiers, although needed to restore the soliton energy, introduces noise
originating from amplified spontaneous emmision (ASE). To study the impact of
noise on soliton evolution, the evolution of the mean free velocity of the soliton
due to ASE will be studied in this paper. In case of lumped amplification, solitons
are perturbed by ASE in a discrete fashion at the location of the amplifiers. It can
be assumed that noise is distributed all along the fiber length since the amplifier
spacing satisfies za � 1 (Kivshar and Agarwal, 2003). In (8), σ (x, t) represents
the Markovian stochastic process with Gaussian statistics and is assumed that
σ (x, t) (Biswas, 2004; Elgin, 1993) is a function of t only so that σ (x, t) = σ (t).
Now, the complex stochastic term σ (t) can be decomposed into real and imaginary
parts as

σ (t) = σ1(t) + iσ2(t) (32)

is further assumed to be independently delta correlated in both σ1(t) and σ2(t) with

〈σ1(t)〉 = 〈σ2(t)〉 = 〈σ1(t)σ2(t ′)〉 = 0 (33)

〈σ1(t)σ1(t ′)〉 = 2D1δ(t − t ′) (34)

〈σ2(t)σ2(t ′)〉 = 2D2δ(t − t ′) (35)

where D1 and D2 are related to the ASE spectral density. In this paper, it is assumed
that D1 = D2 = D. Thus,

〈σ (t)〉 = 0 (36)

and

〈σ (t)σ (t ′)〉 = 2Dδ(t − t ′) (37)

In soliton units, one gets,

D = Fn − FG

Nphza

(38)

where Fn is the amplifier noise figure, while

FG = (G − 1)2

G ln G
(39)
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is related to the amplifier gain G and finally Nph is the average number of photons
in the pulse propagating as a fundamental soliton.

3.1. Mathematical Analysis

The three integrals of motion of the power law nonlinearity are

E =
∫ ∞

−∞
|q|2dx

= A2−p

(
1 + p

2p2

) 1
2 �

(
1
2

)
�

(
1
p

)

�
(

1
p

+ 1
2

) = B
2−p

p

(
1 + p

2p2

) 1
p �

(
1
2

)
�

(
1
p

)

�
(

1
p

+ 1
2

) (40)

M = i

2

∫ ∞

−∞
(q∗qx − qq∗

x ) dx

= 2κA2−p

(
1 + p

2p2

) 1
2 �

(
1
2

)
�

(
1
p

)

�
(

1
p

+ 1
2

)

= 2κB
2−p

p

(
1 + p

2p2

) 1
p �

(
1
2

)
�

(
1
p

)

�
(

1
p

+ 1
2

) (41)

and

H =
∫ ∞

−∞

[
1

2
|qx |2 − 1

p + 1
|q|2p+2

]
dx

= B
2
p

2p2

(
1 + p

2p2

) 1
p

⎡

⎣ (B2 + κ2p2)

B

�
(

1
2

)
�

(
1
p

)

�
(

1
p

+ 1
2

) − 2B
�

(
1
2

)
�

p+1
p

�
(

p+1
p

+ 1
2

)

⎤

⎦

= A2

2p2

⎡

⎣
{

Ap

(
2p2

1 + p

) 1
p

+ κ2p2

Ap

(
1 + p

2p2

) 1
2

}
�

(
1
2

)
�

(
1
p

)

�
(

1
p

+ 1
2

)

− 2Ap

(
2p2

1 + p

) 1
2 �

(
1
2

)
�

(
p+1
p

)

�
(

p+1
p

+ 1
2

)

⎤

⎦ (42)

Using the first two integrals of motion, one can write
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dA

dt
= ε

2 − p
Ap−1

(
2p2

1 + p

) p−1
2p �

(
1
2 + 1

2

)

�
(

1
2

)
�

(
1
p

)
∫ ∞

−∞
(q∗R + qR∗) dx (43)

dκ

dt
= εB

p−2
p

(
2p2

1 + p

) 1
p �

(
1
p

+ 1
2

)

�
(

1
2

)
�

(
1
p

)

[
i

∫ ∞

−∞
(q∗

xR − qxR
∗) dx − κ

∫ ∞

−∞
(q∗R + qR∗) dx

]
(44)

Now substituting the perturbation terms R from (31) and carrying out the integra-
tions in (43) and (44) yields

dA

dt
= 2εδ

2 − p
A2m+1

(
1 + p

2p2

) 1
2p �

(
1
p

+ 1
2

)

�
(

1
p

)
�

(
m+1

p

)

�
(

m+1
p

+ 1
2

)

+ 2εβ

2 − p

Ap−1

B

(
2p2

p + 1

) p−1
2p �

(
1
p

+ 1
2

)

�
(

1
p

)

⎡

⎣A2B2

p2

�
(

p+1
p

)

�
(

p+1
p

+ 1
2

) − A2

p2
(κ2p2 + B2)

�
(

1
p

)

�
(

1
p

+ 1
2

)

⎤

⎦

+ 2εA

2 − p
Ap−1

(
2p2

1 + p

) p−1
2p �

(
1
p

+ 1
2

)

�
(

1
2

)
�

(
1
p

)
[
σ1

∫ ∞

−∞

cos φ

cosh
1
p τ

dx

+ σ2

∫ ∞

−∞

sin φ

cosh
1
p τ

dx

]
(45)

dκ

dt
= 4εβ

p2
κA2B

2p−2
p

(
2p2

p + 1

) (
p − 2

p + 2

)

+4εκAB
p − 2

p

(
2p2

1 + p

)1
p �

(
1
p

+ 1
2

)

�
(

1
2

)
�

(
1
2

)
∫ ∞

−∞

[
B

p

tanh τ

cosh
1
p τ

(σ2 cos φ − σ1 sin φ)

+ 2κ

cosh
1
p τ

(σ1 cos φ + σ2 sin φ)

]
dx (46)
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Equations (45) and (46), as it appears, is difficult to analyse. If the terms with σ1

and σ2 are suppressed, the resulting dynamical system has a stable fixed point,
namely a sink, given by (Ā, κ̄) = (Ā, 0) where

Ā =
⎡

⎣ 2β

δ(p + 1)

�
(

m+1
p

+ 1
2

)

�
(

m+1
p

)

⎧
⎨

⎩
�

(
p+1
p

)

�
(

p+1
p

+ 1
2

) −
�

(
1
p

)

�
(

1
p

+ 1
2

)

⎫
⎬

⎭

⎤

⎦

1
2(m−p)

(47)

This phenomenon, known as soliton cooling (Blow et al., 1988; Hasegawa and
Kodama, 1995), is used to lock the frequency and the amplitude of the soliton to a
fixed value for the stable propagation of solitons through optical fibers [26]. Now,
linearizing the dynamical system about this fixed point gives, after simplification

dA

dt
= −ε

(
A2m+1 − ξ

A

)
(48)

dκ

dt
= −ε[κ − ζ (1 + A − κ)] (49)

where

ξ = σ1

∫ ∞

−∞

cos φ

cosh
1
p τ

dx + σ2

∫ ∞

−∞

sin φ

cosh
1
p τ

dx (50)

and

ζ =
∫ ∞

−∞

[
B

p

tanh τ

cosh
1
p τ

(σ2 cos φ − σ1 sin φ) + 2κ

cosh
1
p τ

(σ1 cos φ + σ2 sin φ)

]
dx

(51)
Equations (48) and (49) are called the Langevin equations which will now be
analyzed to compute the soliton mean drift velocity of the soliton. If the soliton
parameters are chosen such that ζA is small, then (49) gives

dκ

dt
= −ε [κ − ζ (1 − κ)] (52)

One can solve (52) for κ and eventually the mean drift velocity of the soliton can
be obtained. The stochastic phase factor of the soliton is defined by

ψ(t, y) =
∫ t

y

ζ (s) ds (53)

where t > y. Assuming that σ is a Gaussian stochastic variable we arrive at

〈eψ(t,y)〉 = eD(t−y) (54)
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〈e[ψ(t,y)+ψ(t ′,y ′)]〉 = eDθ (55)

where

θ = 2(t + t ′ − y − y ′) − |t − t ′| − |y − y ′| (56)

and

〈ζ (y)e−ψ(t,y)〉 = ∂

∂y
〈e−ψ(t,y)〉 = DeD(t−y) (57)

〈ζ (y)ζ (y ′)e[−ψ(t,y)−ψ(t ′,y ′)]〉 = 2Dδ(y − y ′)eDθ + ∂2

∂y∂y ′ e
Dθ (58)

Now solving (49) with the initial condition as κ(0) = 0 and using equations (53)
to (58) the soliton mean drift velocity is given by

〈κ(t)〉 = − D

1 − D

{
1 − e−ε(1−D)t

}
(59)

From (59), it follows that

lim
t→∞〈κ(t)〉 = D

1 − D
(60)

Thus, for large t, 〈κ(z)〉 approaches a constant value provided D < 1. Thus, the
soliton mean frequency and hence the mean drift velocity of the soliton, approaches
a constant for a large time. For D > 1, 〈κ(t)〉 becomes unbounded for large t .

4. CONCLUSIONS

In this paper, the dynamics of optical solitons with power law nonlinearity
in presence of perturbation terms, both deterministic as well as of stochastic, are
studied. The Langevin equations were derived and the corresponding parameter
dynamics was studied. The mean drift velocity of the soliton was obtained.

In this study, it was assumed that the stochastic perturbation term σ is a
function of t only, for simplicity. However, in reality σ is a function of both x

and t and thus making it a far more difficult system to analyze although such kind
of situations are being presently studied. Although, in this paper the stochastic
perturbation due to other non-Kerr law nonlinearities was not studied, the results
of those studies are awaited at this time.
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